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Abstract
In this paper elastic major-axis flexural buckling of thin-walled channel members with slotted 
webs is discussed. First the behaviour is studied, and the major influencing factors are identified 
by using the recently developed constrained finite element method, which makes it possible to 
separate the behaviour/buckling modes, as well as provides with full control on the details of the 
calculations. It is found that, though other factors have some influence on the buckling results, 
the most important factor is the in-plane shear deformations of the slotted web, which can be 
disregarded, partially, or fully considered. The existence of these influencing factors highlights 
the importance of a proper definition for flexural buckling. An analytical model is also proposed 
for the calculation of critical force of slotted-web members, which model is able to consider the 
effect of shear deformations, the degrading effect of the slots on the axial and bending rigidity, 
as well as the effect of longitudinal second-order strain terms (which is included in typical shell 
models,  but  disregarded  in  most  beam  models).  Extended  numerical  studies  have  been 
conducted, covering a wide range of column lengths and slot geometries. The results of the 
numerical studies justify the applicability of the constrained finite element method, as well as 
show that the analytical model estimates the critical loads with reasonably accuracy.

1 Introduction
Cold-formed steel  members  sometimes have holes  due to  various  reasons  and in  various 
arrangements. There might be few larger openings, as well as many smaller holes. A special 
version of this latter case is when the profile, typically channel member, is produced with slotted 
web. Though the introduction of slots is in order to improve heat transfer characteristics, i.e., 
slots  are applied due to non-structural  reasons,  they have non-negligible influence on the 
structural behaviour, too. 

When a thin-walled member is subjected to compressive actions, buckling has pronounced role 
in the behaviour. It is typical to distinguish in between global (G), distortional, (D), local (L), in-
plane shear (S) and transverse extension (T) deformation modes. Classic buckling modes can 
easily be assigned to the various deformations modes: global buckling (such as flexural or 
flexural-torsional buckling of columns, or lateral-torsional buckling of beams) is characterized 
primarily by G deformations, distortional buckling by D deformations, and local buckling (e.g., 
local-plate buckling, shear buckling, web crippling) by L deformations. However, S and T 
deformations sometimes have significance, too; in this paper the important effect of in-plane 
shear will be discussed in detail. 



The buckling behaviour is, in general, complex, and the introduction of holes further increases 
the complexity. During the last few decades cold-formed steel members with holes have been 
studied by several research projects. Many publications are discussing elastic stability problem, 
see e.g. [1-4]. Others are aiming to study the nonlinear behaviour, either by performing real 
experiments or advanced numerical analysis, see e.g. [5-10]. Numerical methods have also been 
proposed specifically for the analysis of thin-walled members with holes, especially when 
smaller holes are present in a regular distribution, such as in rack uprights [11-12].  Similarly, in 
[13-15] an approximate method is proposed for member with holes, by using reduced thickness 
to account for the effect of holes. 

All  these approaches cannot  formally perform modal  decomposition,  i.e.,  cannot  formally 
separate the behaviour into G, D, L, modes. Since our purpose here is to study one specific type 
of buckling, separation of the buckling types is essential. There are two well-known methods for 
the separation of behaviour modes, namely: the generalized beam theory (e.g., [16-17]) and 
constrained finite strip method (e.g. [18-22]). Originally none of these methods could handle 
members with holes, later, however, the methods or the underlying concept have evolved into 
methods that can (at least partially) separate the behaviour modes, see e.g. [23-28]. None of 
these proposals, however, is general enough.

In this paper a general-purpose commercial finite element software (Ansys, [29]) and the so-
called constrained finite element method (cFEM) are applied. In Ansys formal decomposition is 
not  possible  in  general.  On the other  hand,  cFEM is  designed with the ability  of  formal  
separation of behaviour modes, see [30-33]. cFEM is essentially a shell finite element method, 
therefore can easily handle members with holes, as already discussed in [34]. Therefore, cFEM 
is an ideal candidate for the analysis of slotted cold-formed steel members.

Though thin-walled members with holes are extensively, members with slotted webs are much 
less discussed by research papers. Some papers are focusing on the thermal properties (which is 
out of the area of this actual paper), while other on the strength properties. Research on the 
mechanical behaviour of members with slotted webs started (most probably) in the beginning of 
the 90’s, the first results summarized in (not-easily accessible) research reports. In [35] there is 
an overview of these first results, describing the characteristic behaviour of studs with slotted 
web, identifying the specialities of the behaviour (e.g., radically reduced shear rigidity of the 
slotted web). In [36] and experimental program is reported on steel partition walls, mostly non-
slotted members are tested, but slotted stud is considered, too. [37] is focusing on slotted plates 
(rather than members with slotted web), on the basis of results of nonlinear FE analyses design 
equations  are  proposed  for  local  buckling  (employing  effective  width  method).  Lately, 
Degtyareva  and  Degtyarev  published  papers  [38-42]  on  the  shear  behaviour  of  channel 
members with slotted web, including experimental results, elastic and nonlinear finite element 
simulations, as well as proposals for design against shear buckling. In [43] there is a review on 
the bending behaviour of channel members with slotted web.

The available publications are focusing on the local behaviour of the slotted webs, either local-
plate buckling or shear buckling, but no detailed results are found on the global behaviour. The 
authors of the actual paper reported some results on the flexural buckling of various slotted 
members in [44], which results now are significantly extended, by utilizing the abilities of the 
recently proposed cFEM. In this paper major-axis buckling is discussed only. It is to note that 
while major-axis flexural buckling is a natural buckling mode for double-symmetrical cross-
sections, it is not a natural buckling mode for mono-symmetric channel members. If the member 
is  not  specifically supported,  it  would buckle in minor-axis  flexural  mode or in flexural-
torsional mode. However, if torsion of the member is prevented, major-axis flexural mode 
becomes realistic.  Since the channel  members with slotted webs are frequently supported 
laterally  by  an  adjoining  component  (e.g.,  by  some  OSB,  gypsum  board  or  trapezoidal 
sheeting), it is reasonable to consider major-axis buckling. In this paper, therefore, major-axis 



(elastic)  flexural  buckling  is  discussed  only.  The  effect  of  slotted  web  is  investigated 
numerically, by using shell finite element analysis (Ansys and cFEM). The major factors that 
influence the behaviour are identified, with a special focus on the effect of in-plane shear 
deformations which is found to be a crucial factor. An analytical model is also proposed for the 
calculation of flexural buckling of channel columns with slotted web. The influence of the 
parameters of the model is discussed in detail, as well as the results are compared to results of  
shell finite element calculations.

2 Slotted members and numerical models

2.1 Slotted channel members 

To analyse the effect of holes, numerical and analytical studies have been performed. Column 
members are analysed with and without slots. Various channel-like cross-sections are selected, 
C-shaped cross-sections,  and channel  sections  with  a  pronounced web stiffener  (centrally 
positioned  in  the  web)  called  Sigma  section.  When  slots  are  applied,  they  are  centrally 
positioned in the web of the C-section, while two variations are considered for the Sigma-
sections: (i) symmetrically positioned slots below and above the web stiffener (referred also as 
SS-section),  or (ii)  asymmetrically positioned slots,  located only above or below the web 
stiffener (referred also as SA-section). The sections are illustrated in Fig. 1. The following 
dimensions are used: 200 mm for the web height, 40 mm for the flange widths, 20 mm for the lip 
lengths, and 2 mm for the thickness. The given dimensions are out-to-out dimensions. The lips 
are perpendicular to the flanges. In the case of SA/SS-sections the web stiffener has a height of 
15 mm and width of 30 mm.
Members without holes and with slotted webs are considered In case of slotted webs the 
assumed slot pattern is shown in Fig. 2.  During the studies the slot sizes and slot distances are 
kept constant, however, the number of slot rows is varying from 1 to maximum 15.

C section SS section SA section

Figure 1: Channel section with/without web stiffener

Figure 2: Slot pattern



The considered material has characteristics similar to regular steel. However, previous studies  
highlighted that when constraining is applied to prevent transverse deformations of the cross-
sections, it introduces an increase of the axial stiffness (as well as all the stiffness parameters 
associated with warping), therefore, results are more realistic if the Possion’s ratio is set to zero. 
(For more details, see [45]). Thus, the material properties are as follows: E = 210 000 MPa and 
ν=0. 

Various column lengths are considered. In all the cases the column members have simple 
supports at both ends. Since the members are thin-walled, various buckling modes can be 
calculated by a regular shell FE analysis, including plate buckling and distortional buckling. 
Here,  however,  major-axis  buckling  modes  are  investigated,  therefore,  it  was  an  aim  to 
eliminate other buckling types from the analysis.

2.2 Commercial shell FE model
As a commercial finite element software, the Ansys software is used [29]. Thin shell elements 
are employed based on Kirchhoff plate theory, called SHELL63 in Ansys. Preliminary studies 
showed that the results are relatively sensitive to discretization, so a relatively fine mesh is  
necessary (e.g., with at least 2-3 elements transversally between the slot rows). The analysed 
column is simply-supported which means that the ends are free to rotate about the transverse 
axes and free to warp, but restrained against transverse translations and restrained against 
twisting rotation. The column is loaded by two concentrated longitudinal forces at its ends,  
equal in magnitude but opposite in direction, which is resulted a compressive axial force. The 
end forces are applied as distributed loads along the mid-lines of end cross-sections. 

The analysed members are constrained in order to exclude other than global buckling modes. 
Two types of constraints are applied, as follows: (c1) constraints to exclude cross-section 
deformations, (c2) constraints to exclude in-plane shear deformations. If c1+c2 constraints are 
used, this leads to classical shear-free bending deformations. If c1 is used without c2, this leads 
to global modes with in-plane shear. The constraints are realized as follows. Criterion c1 is 
enforced  by  introducing  ‘virtual  diaphragms’.  Virtual  diaphragm  ensures  that  transverse 
displacements (i.e., transverse translations and rotation about the column’s longitudinal axis) in 
a cross-section are linked to each other. (In Ansys this kind of constraint can readily be realized 
by the CERIG command.) Criterion c2 means the exclusion of in-plane (membrane) shear 
deformations of the plate elements of the cross-section. A straightforward way to realize it in an 
Ansys FE analysis is to apply a special finite element (called SHELL28) with increased shear 
rigidity. Note, some more details on how to do the constraining in Ansys can be found in [45].

2.3 cFEM model
Constrained finite element method (cFEM) is essentially a shell finite element calculation, but 
the method is developed so that modal decomposition would be possible. Separation of the 
behavior  modes  is  realized  by  applying  mechanical  constraints.  In  order  to  maintain 
constraining  ability,  the  longitudinal  shape  functions  are  specially  selected,  but  the  shell 
elements can be used as any regular flat shell element.

When a member is constrained into G, D, L, etc. deformation mode, it is enforced to deform in 
accordance with some mechanical criteria, characterizing for the intended deformation mode. 
These criteria are formulated by displacements and displacement derivatives (i.e., strains). The 



criteria  can  be  expressed  by  constraint  matrices  that  are  denoted,  in  general,  by  R.  The 
application of the constraint matrix enforces to fulfil certain relationship between various nodal 
degrees of freedom, specific to the given ‘M’ deformation space. This automatically means a 
reduction of the effective degrees of freedom. Mathematically, the  d displacement vector is 
expressed as follows:

d=RM dM

where RM is a so-called constraint matrix to the M space, and dM is the reduced displacement 
vector. Since the dM reduced displacement vector has fewer elements than that of the original d 
vector, the elements of  dM vector cannot (typically) be interpreted as nodal displacements 
anymore.  Another  view of  the  above  expression  is  therefore:  the  column vectors  of  the 
constraint matrix are the  base vectors of the displacement field that is represented by the 
constraint matrix, and the d displacement vector is expressed as a linear combination of base 
vectors and combination factors, which latter ones are nothing else than the elements of the dM 

vector. ‘M’ might be G, D, L, S or T, or, in fact, ‘M’ might mean any combination of base 
vectors from any spaces. 
By using the constraint matrix, solution in a reduced, specific deformation space is possible. For 
example, first-order static analysis can be done. In this case the (unconstrained) problem has the 
following form:

K ed=f
where Ke is the (elastic) stiffness matrix, d is the displacement vector and f is the load vector. If 
deformations are constrained, the problem can be written as follows:

K eRM dM=f
from which

RM
T K eRM dM=RM

T f
K e M dM=f M

where KeM and fM can be regarded as the modal version of the stiffness matrix and load vector, 
respectively, constrained into the given ‘M’ deformation space.
In case of linear buckling analysis the problem is formulated mathematically as a generalized 
eigen-value problem, namely:

K eΦ−Λ K gΦ=0
where Ke and Kg are the global elastic and geometric stiffness matrices, and 

Λ=diag< λ1 λ2 λ3…λnDOF>¿Φ=[ϕ1ϕ2ϕ3…ϕnDOF ]

where λi is the critical load multiplier and ϕi is the associated buckling shape, and nDOF denotes 
the number of degrees of freedom. 
When the constraints are enforced, the displacement vector is expressed by modal coordinates, 
see Eq. (1). This equation can also be applied to any buckling shape ϕ, since the buckling shape 
itself is a displacement vector. Therefore:

ϕ=RM ϕM

By substituting Eq. (8) to Eq. (6), then multiplying (from the left) by the transpose of the 
constraint matrix, the eigen-value problem can be written as: 

RM
T K eRMΦM−ΛM RM

T K gRMΦM=0

which is another generalized eigen-value problem, given in the reduced M deformation space:
K eMΦM−ΛM K gMΦM=0

 (1)

(2)

(3)

 (4)

 (5)

 (6)

(7)

(8)

(9)

(1)



Solving the above equation leads to the modal eigen-vectors, from which the buckled shapes 
can be back-calculated by using Eq. (8).

3 Flexural buckling of a slotted column

3.1 General
Flexural buckling is probably the simplest form of buckling, when an initially straight column 
under the effect of a sufficiently big concentric compressive force is suddenly subjected to 
significant lateral displacements (but the displacements take place in a single plane, without any 
twist of the member). Though some solution for the critical force exists for more than 200 years, 
and though this type of buckling is taught in undergraduate classes, the exact definition of 
flexural buckling is not obvious in slightly more complicated cases such as a thin-walled 
column member with web slots.

It  can be considered as  universally  agreed that  the notion of  flexural  buckling is  usually 
interpreted in the realm of beam/column members, i.e., when the member can reasonably be 
modelled by a beam-model. Consequently, flexural buckling assumes the lack of any significant 
cross-section  deformation.  This  alone,  however,  does  not  define  the  buckling  shape 
unambiguously.

In some cases the proper calculation of the critical load is not possible by using beam-models. A 
characteristic example is a thin-walled member (especially if holes are present). Thin-walled 
members can conveniently be modelled by shell-models, such as finite strip model or finite 
element with using (flat) shell elements. If shell-model is used, however, flexural-buckling-like 
buckled shape can be achieved by various ways, but sometimes with significantly different  
critical load values. 

3.2 Second-order strains, through-thickness distribution
In  [46]  global  column  buckling  of  thin-walled  members  is  discussed,  including  flexural 
buckling. The discussion is based on shell model. A possible definition is also given if in-plane 
shear deformations in the plate elements is excluded, which lead to analytical solution similar or 
identical to the classical global column buckling formulae. Three major aspects have been 
revealed: the Poisson-effect, the effect of selection of second-order strain terms, and whether 
the variation of strain/stress through the plate thickness is considered or disregarded.

If cross-section deformations are fully restrained, as suggested by beam-model, the restrained 
transverse extensions/contractions in the shell models lead to a virtual increase of axial rigidity, 
hence  to  a  difference  between  shell-model-based  and  classical  buckling  solutions.  The 
difference is dependent on the Poisson’s ratio and the type of buckling, and disappears if 
Poisson’s ratio is (forced to be) zero.

It has moreover been shown that the longitudinal second-order strain term (from the Green-
Lagrange strain matrix) has important effect on the results, especially for (very) short columns. 
In classical solutions, as in a typical beam-model approach, this longitudinal second-order strain 
term is disregarded, but in case of typical (numerical) shell models it is considered, which has 
also been demonstrated by various numerical calculations in [45].

In [46] it has also been shown that some, typically small, variation of the calculated critical load 
is  due  to  the  considered or  disregarded variation of  the  strains/stresses  through the  plate 
thickness.  



These factors have certain effect on the critical loads for any thin-walled member. However, if 
holes are present, further factors might influence the behaviour. These factors have partially 
been discussed in [43], and comprehensively discussed as follows. 

 

3.3 Rigidity degradation due to removed material
An obvious effect of the presence of the removed material is that they reduce the flexural  
rigidity of the beam. In case of slotted webs the reduction is certainly dependent on the slot 
pattern, namely on how many slot rows we apply, and also on the size and arrangement of slots. 
Supposedly, the rigidity reduction is not constant along the length, since the amount of the 
removed material is dependent on the location of the cross-section. There are three typical 
cross-sections, as illustrated in Fig. 3 (for 5 slot rows).

Figure 3: Reduced cross-sections due to slotted web

The rigidity degradation is demonstrated here in two ways. In Tables 1-3 the moment of inertias 
are given for the considered cross-sections, depending on the number of slot rows. As the 
numerical values prove, the reduction of the moment of inertia is non-negligible.

Table 1: Reduction of the moment of inertia due to slots, C section 

nr or slot 
rows

0 3 7 11 15

inertia at 1 mm4 3394600 3394579 3386538 3354496 3282454
inertia at 2 mm4 3394600 3392558 3374517 3324475 3226433
inertia at 3 mm4 3394600 3392538 3366454 3284371 3114288

Table 2: Reduction of the moment of inertia due to slots, SS section 

nr or slot rows 0 3×2 5×2 7×2
inertia at 1 mm4 3396478 3331456 3262435 3185413
inertia at 2 mm4 3396478 3262435 3185413 3096391
inertia at 3 mm4 3396478 3197413 3051370 2885326

Table 3: Reduction of the moment of inertia due to slots, SA section 



nr or slot rows 0 3 5 7
inertia at 1 mm4 3396478 3363459 3327390 3286221
inertia at 2 mm4 3396478 3327390 3286221 3237897
inertia at 3 mm4 3396478 3292221 3210361 3113399

In Fig. 4 the reduction of the critical force is plotted in the function of slot rows. The critical 
force  values  are  calculated  by  cFEM, with  forcing  global  flexural  deformations.  Various 
column lengths have been considered (between 300 and 5000 mm), but the reduction show very 
small scatter, so it can be concluded that the reduction of the critical force is independent of the 
column length. As Fig. 4 shows, the Sigma profiles are more affected by the slots, which is 
explained by the fact that in the Sigma sections the slots are located farther from the neutral axis. 
Moreover, the asymmetric placement of the slots slightly increases the critical force reduction. 

Figure 4: Critical load reduction due to removed material

3.4 The effect of shear deformations
It is known that the slots reduce the in-plane shear rigidity of the web plate. This reduction might 
have important effect on the flexural buckling critical load. There are at least three options how 
to consider the in-plane shear deformations: (a) totally exclude, (b) exclude in the steel material 
but allow in the holes, (c) allow in the steel material, too.

The difference between the three options can clearly be visualized by considering a channel 
member with a few large rectangular holes. The characteristic deformations are shown in Fig. 5.



Figure 5: Characteristic deformations by neglecting or considering in-plane shear deformations

In case of slotted web the differences are less visible, but the effect of shear deformations is easy 
to observe by the critical load values. The critical load values are reduced due to the shear  
deformations, the reduction is plotted in Figs. 6-8. 
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Figure 6: Critical load reduction due to shear deformations, C section

   
a) no shear deformations allowed

      
b) partial shear: no shear deformations in steel, but allowed in holes

     
c) full shear: shear deformations allowed in steel and in holes
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Figure 7: Critical load reduction due to shear deformations, SS section
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Figure 8: Critical load reduction due to shear deformations, SA section

There are tendencies that are common in all the three sections, namely: (i) the effect of shear  
deformations is decreasing with the increasing of the length, (ii) the effect of shear deformations 
is increasing with the number of slot rows, and (iii)  ‘full  shear’ leads to larger reduction 
compared to ‘partial shear’. 

There are differences in the tendencies depending on the cross-section. It seems that the web 
stiffener itself does not significantly modify the tendencies, but the asymmetry of the slot 
pattern does, that is why the results of SA are different from those of C and SS. 

It is to understand that ‘partial shear’ option is a possible generalization of the classic beam-
model-based assumptions for global buckling, since classic solutions assume no in-plane shear 
deformations in the material, i.e, in the plates from which the thin-walled member is built up. 
Evidently, ‘partial shear’ option converges to classical solution as soon as the number of holes 
converges to zero. But even in this option the reduction of critical force is at least a few 
percentage, and can be as large as 10-20%, depending on the column length and the number of 
slot rows. And this reduction is added to the few percent reduction due to the flexural rigidity 
reduction caused by the removed material.



3.5 The effect of initial stress state
If shell finite element model is employed to calculate flexural (i.e., global) buckling, it is  
necessary  to  eliminate  any  (significant)  deformation  of  the  cross-sections.  In  case  of  a 
commercial FEM package this is not an easy task. In Ansys, as described in Section 2.2. rigid 
constraints can be defined, by the application of which diaphragms can be formed at multiple 
cross-sections, so that the cross-section deformations are (practically) eliminated. In order to 
have buckling solution, an initial stress state is necessary from which the geometric (or stress)  
stiffness matrix can be calculated. In a shell finite element calculation the initial stress state is  
determined by a first-order linear static analysis. It is to observe that in case of the actual Ansys 
calculation the rigid diaphragms have effect not only on the buckled shapes, but also on the first-
order deformations, hence, on the first-order stress state. In other words, in case of the Ansys 
calculations the initial stress state is determined by a constrained shell model. 

The cFEM method provides with a more general, and practically simpler way, since in cFEM 
any modal deformation can easily be enforced, including global deformations modes. For the 
actual cases, there are still two alternatives how the desired major-axis flexural buckling can be 
achieved. One way is to constrain the deformation into global modes. In this case we need to 
apply lateral supports for the member since otherwise there would be a minor-axis flexural and 
two flexural-torsional buckling modes instead of the intended major-axis flexural buckling. The 
other way to achieve major-axis  flexural  buckling is  to constrain directly into major-axis 
flexural deformation mode. In that case there is no need to use lateral supports to avoid the 
lateral and torsional displacements. In the actual cFEM implementation it is optional whether 
the initial stress state is determined from constrained or unconstrained analysis. To demonstrate 
the effect of initial stress state, 3 options are compared here: 

(a) the member is without lateral supports, the buckling is constrained to major-axis flexural 
mode, and the first-order analysis is unconstrained;

(b) the member is with lateral supports, the buckling is constrained to global modes, and the 
first-order analysis is unconstrained;

(c) the member is with lateral supports, the is buckling constrained to global modes, and the 
first-order analysis is constrained.

The first-order solutions are shown in Fig. 9, with magnifying the displacement by 10000. The 
colouring is in accordance with the longitudinal normal stresses.

  



option (a): 
without lateral supports, 
unconstrained first-order

option (b): 
with lateral supports, 

unconstrained first-order

option (c): 
with lateral supports, 
constrained first-order

Figure 9: First-order longitudinal normal stresses, C section,

In option (a) the first-order displacements include some minor-axis bending, caused by the 
eccentricity of the loading, which is centric for the gross cross-section, but slightly eccentric in 
cross-sections with the slots. This eccentricity, however, is small; even though it makes the 
normal stress distribution slightly uneven in the flanges, this variation of normal stresses is very 
small. In option (b) the minor-axis bending is excluded by the applied lateral supports, which 
ensures a more constant stress distribution in the flanges, but still the stresses are very similar to 
those of option (a). In option (c) the cross-section deformations are effectively prevented, so the 
uniform stress distribution is enforced in each cross-section. This also means that the first-order 
stress is discontinuous along the length. This illustrates that constraining a first-order solution 
might lead to unexpected results, therefore requires special care.

Even though the first-order solutions have some distinct differences qualitatively, depending on 
the details of the supports and constraining, quantitatively the differences in the critical loads 
are fairly small. Between options (a) and (b) the differences are well below 1% for any of the 
analysed cases. The differences between options (c) and (a)/(b) are slightly larger, but still  
negligible for most of the cases. The maximum difference is sometimes larger than 1%, but only 
if  the  member  is  very  short  (i.e.,  300-500 mm),  if  it  has  many  slot  rows,  and  if  shear 
deformations are totally prevented. In all the other cases the difference caused by the initial 
stress state is practically negligible.

4 Analytical model for flexural buckling

4.1 Model without shear deformations
Classical shear-free flexural buckling (or: in general, global buckling) of columns with solid 
webs have been comprehensively studied in [45-46]. Various beam-like and shell-like models 
are considered, and analytical solutions are also derived in various options, including options 
that can (practically) precisely imitate constrained shell models such as the Ansys shell FE 
model  used in  this  study.  According to  the  referenced papers,  the  option that  best  fit  to 



constrained shell FEM is denoted there as ‘yny’, and the corresponding formula for flexural 
buckling is:

Fcr=
1

1−ν2
π2EAI

L2 A+π2 I r
= 1

1
FF

+ 1
Fa

FFr
FF

where

FF=
π2EI

(1−ν2 ) L2

FFr=
π2E I r

(1−ν2 ) L2

Fa=
EA

1−ν2

where E is the modulus of elasticity,  is the Poisson’s ratio, L is the member length, while the 
involved cross-sectional properties are as follows: A is the cross-sectional area, I is the second 
moment of areas calculated for the relevant (e.g., strong) axis with considering own plate 
inertias (i.e., the (‘width’)×(‘thickness’)3/12 terms), while Ir is the same second moment of area 

but with neglecting own plate inertias. In case of thin-walled members I≃I r  hence FF≃FFr , 
therefore the formula can approximately be written as: 

Fcr≅
1

1−ν2
π2EAI

L2 A+π2 I
= 1
1/FF+1/Fa

Note, this formula is exactly identical to the one that belongs to ‘yyy’ option in [45-46].

As numerical results clearly show, the effect of holes is not negligible, even if the in-plane shear 
is neglected. The above formula can most surely be used, but with reduced section properties.  
Assuming that the web slots are present along the whole length of the member (which is the 
typical practical situation), it is reasonable to assume that an equivalent constant axial and 
bending stiffness can be defined. The equivalent section properties accounting for the slots are 
proposed to calculate as the weighted average from the characteristic cross-sections, as follows:

Aeq=ρ1 A1+ρ2 A2+ρ3 A3
I eq=ρ1 I 1+ρ2 I 2+ρ3 I 3

where A1, A2 and A3 are cross-section areas with considering the holes due to the slots, while I1, 
I2 and I3 are moment of inertias for the relevant (i.e. strong) axis calculated with considering the 
holes. The ‘1’, ‘2’ and ‘3’ locations are illustrated in Fig. 3. Obviously, the values of the ρ 
coefficients are dependent on the arrangement of the slots. Evidently, ρ1+ρ2+ρ3=1, and it is 
reasonable to assume that ρ1 should be equal to ρ2 (in case of any regular slot arrangement), 
while ρ3 should have the largest value out of the three. The simplest approach to get the ρ values 
is to calculate the total (relative) lengths of the sections. For the slot arrangement shown in 
Fig. 2, with this approach we get ρ1=ρ2=0.2 and ρ3=0.6. 

(11)

(12)

(13)

(14)

(152)

(3)

(4)



4.2 Model with shear deformations
Flexural buckling of columns with considering the effect of in-plane shear deformations has 
been comprehensively studied in [47]. Various beam-like and shell-like models are considered, 
and  analytical  solutions  are  also  derived  in  various  options,  including  options  that  can 
(practically) precisely imitate constrained shell models such as the Ansys shell FE model or 
cFEM model used in this study. The critical force equation for this (termed as ‘yny’ option in 
[47]) option is as follows: 

Fcr=
Fa
2FFr {FFS∓√FFS2− 4 FFrFa

[FFr FS+∆ FF (FFr+F S ) ]}
where 

FS=G AS

∆ FF=FF−FFr=
π2E ( I−I r )
(1−ν2 ) L2

FFS=FFr (1+ ∆ FFFa )+FS(1+ FFrFa )
and  G is the shear modulus,  As is the shear area for the relevant direction. Obviously, the 
smallest critical force can be get by taking the negative sign in the formula. Furthermore, in case 

of thin-walled members, 
∆ FF
Fa

≅0, therefore, FFS in the critical force formula can be simplified 

to:

FFS≅FFr+FS(1+ FFrFa )
In the above formulae the Fs term is essentially the shear rigidity of the cross-section. If the web 
of the member is solid, the shear rigidity can be considered to be equal to the product of the web 
area and the shear modulus of elasticity. However, if the web is slotted, the definition of shear  
rigidity needs further considerations. 

4.3 Equivalent shear rigidity of the web
Let us consider a web panel consisted of three parts with a reduced stiffness middle part, as 
shown in Fig. 10. We are searching for an equivalent shear modulus of the web panel so that the 
resultant shear deformations would be identical:

Vh
Geq

=
V hu1
Gu

+
V hu2
Gu

+…+
V hr 1
Gr

+
V hr 2
Gr

+…

where hu1, hu2, etc are the depths of the unslotted web parts, while hr 1, hr 2, etc. are the depths of 
those web parts where the shear rigidity is reduced due to the slots. Moreover, Gu is the shear 
modulus of the unslotted part, while Gr is the shear rigidity of the slotted part (and Gr should 
take account the effect of the holes and the effect of the shear deformations of the base material 
in the slotted web parts). 

(18)

(59)

(6)

(21)

(22)

(23)



Figure 10: Equivalent shear rigidity interpretation

The above equation can also be written as:

Vh
Geq

=
V∑ hu ,i
Gu

+
V∑ hr , j
Gr

from which the equivalent shear rigidity can be expressed as:

Geq=
GuGr h

Gu∑ hr , j+Gr∑ hu ,i

When the above model is applied to slotted webs, ∑ hr , j is simply the total depth of the slotted 

parts, while ∑ hu ,i is the total depth of the unslotted part.

In Section 3.4 two ways are considered for the consideration of shear deformations: partial and 
full.  When  the  above  analytical  model  is  applied  to  cases  with  allowing  partial  shear 
deformations, the shear deformations of the steel material is disregarded, therefore Gu→∞, thus 
the above formula can be simplified to:

Geq=
Gr h

∑ hr , j

When the above analytical model is applied to cases with allowing full shear deformations, the 
shear rigidity of the steel material should be considered for the unslotted parts, therefore:

Geq=
GGr h

G∑ hr , j+Gr∑ hu ,i

In both the above cases we need the shear rigidity of the slotted parts, which can be determined 
by numerical or real experiments. 

4.4 Shear rigidity of the slotted part of the web
To calculate the shear rigidity of the slotted web part, slotted panels have been analysed by shell 
FEM, using linear elastic analysis. The equivalent shear modulus is highly dependent on the 
number of slot rows and the length of the panel, but also influenced by many factors, such as 

(24)

(25)

(26)

(27)



how exactly the shear load is applied, how the plate is supported, how the shear strain is  
interpreted. 

Here the numerical results are shown for the following case: the slotted part is included in the 
model, but narrow, relatively rigid strips are attached (intended to represent the non-slotted 
parts  of  the  profile),  the  edges  are  simply  supported,  the  load  is  transferred  along  the 
longitudinal edges as uniformly distributed shear loads, the average shear strain is calculated as 
the average longitudinal translation of the longitudinal edges divided by the plate depth.

The tendencies are shown in Table 4. In Fig. 11 two deformed panels are presented for the full 
and partial shear cases, respectively. It is to observe that global shear-like deformations are 
obtained even in the partial shear option, due to the bending deformations of the small steel 
strips between the slots. However, the shear-like deformations are significantly larger if shear 
strains are allowed in the base material, too.

Table 4: Shear rigidity of the slotted panel, compared to G 

length 
(mm)

shear 0
slot row

1
slot row

3
slot rows

5
slot rows

7
slot rows

11
slot rows

15
slot rows

500 full 1.00 0.29 0.19 0.16 0.14 0.12 0.10
1000 full 1.00 0.24 0.13 0.11 0.10 0.08 0.08
1500 full 1.00 0.22 0.11 0.09 0.09 0.07 0.07
2000 full 1.00 0.22 0.10 0.09 0.08 0.07 0.06
3000 full 1.00 0.21 0.09 0.08 0.07 0.06 0.06
5000 full 1.00 0.21 0.08 0.07 0.07 0.06 0.06
500 partial >1.0 >1.0 >1.0 1.01 0.58 0.30 0.20
1000 partial >1.0 >1.0 >1.0 0.54 0.33 0.19 0.14
1500 partial >1.0 >1.0 0.70 0.38 0.25 0.15 0.12
2000 partial >1.0 >1.0 0.52 0.31 0.21 0.13 0.11
3000 partial >1.0 >1.0 0.35 0.23 0.17 0.12 0.10
5000 partial >1.0 >1.0 0.23 0.17 0.13 0.10 0.09

    

  
                                 (a) full shear                                                                    (b) partial shear

Figure 11: Deformations of a slotted panel in pure shear (enlarged by a factor of 4)



5 Numerical studies

5.1 Critical load comparison of cFEM and Ansys results
To compare the cFEM and Ansys calculations, a small parametric study has been performed, 
with 3 sections, 4 lengths, 3 shear options, 4 slot patterns. Some results are summarized in 
Table 5. As the numerical values prove, the differences are typically less than 1%. It is also to  
note that the calculations are relatively sensitive to the discretization, so it is reasonable to think 
that the experienced differences in critical loads are primarily due to the differences in the 
discretizations.

Table 5: Critical loads by Ansys, compared to cFEM results 

FEM section shear length 
(mm)

0
slot row

3
slot rows

5
slot rows

7
slot rows

Ansys C full 500 14839 11173 9559 8155 kN
Ansys C full 1000 5684 4816 4334 3910 kN
Ansys C full 1500 2827 2565 2400 2249 kN
Ansys C full 2000 1658 1559 1491 1426 kN
cFEM C full 500 0.00 0.50 0.62 0.85 %
cFEM C full 1000 -0.03 0.46 0.68 1.47 %
cFEM C full 1500 -0.15 0.27 0.56 0.89 %
cFEM C full 2000 -0.02 0.19 0.55 0.65 %
Ansys SA partial 500 23330 20469 19113 17893 kN
Ansys SA partial 1000 6715 6197 5828 5486 kN
Ansys SA partial 1500 3063 2883 2753 2627 kN
Ansys SA partial 2000 1738 1679 1599 1537 kN
cFEM SA partial 500 -0.03 0.18 0.25 0.34 %
cFEM SA partial 1000 -0.34 -0.72 -0.58 -0.31 %
cFEM SA partial 1500 -0.15 0.07 0.14 0.21 %
cFEM SA partial 2000 -0.04 -1.14 0.02 0.03 %
Ansys SS no 500 23330 22104 21216 20222 kN
Ansys SS no 1000 6716 6392 6152 5853 kN
Ansys SS no 1500 3059 2912 2803 2678 kN
Ansys SS no 2000 1739 1657 1594 1538 kN
cFEM SS no 500 0.03 0.27 0.48 0.72 %
cFEM SS no 1000 -0.34 -0.34 -0.36 -0.03 %
cFEM SS no 1500 -0.02 0.02 0.02 -0.03 %
cFEM SS no 2000 -0.08 -0.12 -0.06 -1.08 %

5.2 Critical load comparison of cFEM and analytical results: 
without shear

For the considered slot  geometries  ρ1=ρ2=0.2 and  ρ3=0.6 values have been applied,,  as 
mentioned above. It is found that the coincidence between analytical and cFEM results is 
extremely good for any number of slot rows, as clearly shown by Table 6.



To  illustrate  the  results  of  the  analytical  model  (without  considering  in-plane  shear 
deformations), Table 1 shows some critical forces calculated by cFEM, and the difference of the 
results from the analytical expression (with using ρ1=ρ2=0.2 and ρ3=0.6 values). Only the 
results  for  C-sections are  shown for  a  limited number of  lengths,  but  the tendencies  and 
observations are very similar for other (i.e., SA and SS) sections, too.

It can be observed that the analytical formula gives very precise estimation. Small differences 
exist if the column is very short, especially if there are many slot rows. The reason of the 
differences (most surely) is as follows: if the member is short, the behaviour is not totally 
uniform, e.g., at the ends there are no slots in the FE model, while the analytical model assumes 
a fully uniform rigidity distribution along the length. However, when the member is very short, 
the flexural buckling has little practical relevance. We can conclude, therefore, that the effect of 
holes  is  practically  exactly  assessed  by  the  analytical  model  (without  in-plane  shear 
deformations) for members of realistic lengths.

Table 6: Critical loads, comparison of analytical results to cFEM results 

FEM section length 
(mm)

0
slot row

3
slot rows

7
slot rows

11
slot rows

15
slot rows

cFEM C 500 23167 23069 22851 22331 21373 kN
cFEM C 1000 6677.2 6659.8 6601.3 6460.3 6186.0 kN
cFEM C 1500 3054.1 3049.6 3026.8 2964.7 2839.3 kN
cFEM C 2000 1735.6 1733.8 1721.9 1687.2 1616.2 kN
cFEM C 3000 777.11 776.56 771.56 756.31 724.56 kN
cFEM C 5000 280.83 280.67 278.93 273.46 262.01 kN
Eq. (15) C 500 0.00 -0.32 -0.89 -1.29 -1.49 %
Eq. (15) C 1000 0.00 0.01 0.01 -0.01 0.01 %
Eq. (15) C 1500 0.00 0.01 0.02 0.03 0.09 %
Eq. (15) C 2000 0.00 0.00 0.01 0.02 0.09 %
Eq. (15) C 3000 0.00 0.00 0.00 0.00 0.08 %
Eq. (15) C 5000 0.00 0.00 -0.01 0.00 0.07 %

5.3 Critical load comparison of cFEM and analytical results: with 
partial shear

In Section 4.4 it is shown that the shear rigidity of the slotted part is significantly dependent on 
the member length and on the number of slot rows. However, from practical point of view the  
very short members have little importance (because very short members are not subjected to 
major-axis buckling). On the other hand, the shear deformations have little effect on long 
members. Moreover, it is impractical to use too small (e.g., 1 or 3) or too large (e.g., 11, 15) slot 
rows. It seems, therefore, to be sufficient to apply one single shear rigidity value, which well  
represents the practically more important cases. Based on the results of Table 7, this ‘average’ 
rigidity should be approx. 15-20% of the shear rigidity of the base material. Accordingly, the 
here presented numerical results assumes that the shear rigidity of the slotted web parts is 17% 
of the shear modulus of elasticity of the base material when shear deformations are partially 
allowed (i.e.,  when  shear  deformations  are  allowed in  the  holes  excluded  from the  base 
material).

Table 7 shows results for SA-sections if the in-plane shear deformations are partially allowed 
(i.e, allowed in the slots, but not allowed in the steel material). The critical forces calculated by 



cFEM, and the differences of the results from the analytical expressions are given. Only the 
results for SA-sections are shown, but the tendencies and observations are very similar for other 
(i.e., C and SS) sections, too.

The observation is that the analytical equation is reasonably precise. The tendency is as follows: 
the shorter the member and the more slot rows we have, the larger the difference between the 
cFEM and analytical results. However, if the member (for the actual, 200-mm-depth channel 
sections)  is  larger  than  1000-1500 mm,  the  analytical  formula  is  practically  precise.  For 
extremely short members the here-applied analytical calculation underestimates the critical 
load,  which is  primarily  due to  the  underestimation of  the  equivalent  shear  rigidity.  The 
analytical prediction could be improved by applying a problem-dependent shear rigidity of the 
slotted panels. Even though the difference can be relatively large, these extremely short lengths 
have little practical relevance (from the viewpoint of major-axis flexural buckling), therefore 
the application of one single equivalent shear rigidity for the slotted part (i.e., independently of 
the member length and of the number of rows) is practically sufficient.

Table 7: Critical loads, comparison of analytical results to cFEM results 

FEM section length 
(mm)

0
slot row

1
slot rows

3
slot rows

5
slot rows

7
slot rows

cFEM SA 500 23336 22911 20507 19162 17955 kN
cFEM SA 1000 6693.8 6618.4 6151.8 5794.0 5469.4 kN
cFEM SA 1500 3058.5 3029.5 2885.0 2756.8 2632.7 kN
cFEM SA 2000 1737.5 1722.2 1659.4 1599.1 1537.7 kN
cFEM SA 3000 777.71 771.30 750.61 729.10 705.87 kN
cFEM SA 5000 281.00 278.76 272.89 266.40 259.05 kN
Eq. (18) SA 500 0.00 -4.75 -15.17 -25.18 -32.46 %
Eq. (18) SA 1000 0.00 -1.60 -3.27 -5.72 -8.04 %
Eq. (18) SA 1500 0.00 -0.75 -1.09 -1.78 -2.53 %
Eq. (18) SA 2000 0.00 -0.43 -0.45 -0.65 -0.89 %
Eq. (18) SA 3000 0.00 -0.19 -0.10 -0.04 0.00 %
Eq. (18) SA 5000 0.00 -0.07 0.03 0.15 0.27 %

5.4 Critical load comparison of cFEM and analytical results: with 
full shear

In accordance with the findings of the previous Section, it seems to be sufficient to apply one 
single shear rigidity value for the slotted parts. Based on the results of Table 8, this ‘average’  
rigidity should be approx. 7-8% of the shear rigidity of the base material if shear deformations 
are fully allowed. Accordingly, the here presented numerical results assume that the shear 
rigidity of the slotted web parts is 7.5% of the shear modulus of elasticity of the base material for 
the full shear deformations case (i.e., when shear deformations are due both to the holes and to 
shear deformations of the base material).

Sample results with fully allowing shear deformations are summarized in Table 8: critical forces 
calculated by cFEM, and the difference of the results from the analytical expression are given. 
Only the results for SS-sections are shown, but the tendencies and observations are very similar 
for other (i.e., C and SA) sections, too.

The observations w.r.t the full shear results are essentially identical to those mentioned at the 
partial shear results: for practical lengths the prediction of the analytical formula is reasonably 



precise. The precision of the analytical prediction could be improved by applying a problem-
dependent shear rigidity of the slotted panels, but this does not seem to be necessary.

Table 8: Critical loads, comparison of analytical results to cFEM results 

FEM section length 
(mm)

0
slot row

2×1
slot rows

2×3
slot rows

2×5
slot rows

2×7
slot rows

cFEM SS 500 14449 12252 8630.2 6265.8 4462.4 kN
cFEM SS 1000 5625.2 5177.7 4212.0 3439.9 2789.9 kN
cFEM SS 1500 2809.2 2667.1 2331.8 2033.8 1760.2 kN
cFEM SS 2000 1653.4 1591.8 1443.0 1303.1 1165.0 kN
cFEM SS 3000 760.31 740.30 692.18 644.30 594.41 kN
cFEM SS 5000 278.69 273.07 260.15 246.70 232.03 kN
Eq. (18) SS 500 10.483 8.124 -8.919 -11.372 -4.049 %
Eq. (18) SS 1000 4.054 3.959 -1.724 -2.653 0.343 %
Eq. (18) SS 1500 2.024 2.214 -0.067 -0.356 1.305 %
Eq. (18) SS 2000 1.192 1.395 0.354 0.333 1.650 %
Eq. (18) SS 3000 0.546 0.722 0.585 0.865 1.780 %
Eq. (18) SS 5000 0.199 0.345 0.593 1.004 1.705 %

6 Summary and conclusions
In this paper the major-axis elastic flexural buckling of channel members with slotted web is  
investigated. Channel members without and with a (centrally spaced) longitudinal stiffener are 
studied. The so-called constrained finite element method has been applied to identify those  
factors that influence the buckling behaviour. The results show that the notion of flexural 
buckling is not obvious as soon as the problem is solved by a shell model, such as a shell finite 
element analysis. In case of slotted web, the shear rigidity of the web is radically reduced,  
which, if the in-plane shear deformations are fully or partially allowed, has pronounced effect 
on the flexural buckling (both buckling shape and critical load). As numerical results show, the 
reduction of the shear rigidity of the slotted web is significantly dependent on the slot pattern  
and the member length. It has also been shown that the axial and bending rigidity of the member 
are reduced due to the slots, which might have a small, but sometimes non-negligible effect on 
the buckling. 

An analytical model has been proposed to calculate the critical load for thin-walled members 
with slotted webs. The model is able to consider all the important effects, including the effect of 
longitudinal  second-order strain terms (which is  typically considered in shell  models,  but 
disregarded in most beam models), the degrading effect of the slots on the axial and bending 
rigidity, as well as the effect of in-plane shear deformations of the slotted web. Extended 
numerical studies have been conducted, covering a wide range of column lengths and slot 
geometries. The results of the numerical studies justify the applicability of the constrained finite 
element method, as well as show that the analytical model gives a reasonably precise prediction 
for the critical loads. 

In this paper major-axis flexural buckling is discussed only. It is believed, however, that the 
effect of slots to other types of global buckling are similar, therefore, the conclusions drawn 
here would qualitatively be valid for other types of global buckling. This question, i.e., other 
types of global buckling, might be the topic of future papers.
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